Завдання № 21.28

№ 21.28 Геометрія =  № 44.28 Математика

В опуклому п’ятикутнику ABCDE вершину B сполучено рівними між собою діагоналями з двома іншими вершинами. Відомо, що ∠BEA = ∠BDC, ∠ABE = ∠CBD. Порівняйте периметри чотирикутників ABDE і BEDC.   

Розв'язок:

Відповідь до завдання № 21.28 Геометрія

$ΔABE = ΔCBD$ за стороною і прилеглими кутами

$(BE = BD,$

$ ∠AEB = ∠CDB,$

$∠ABE = ∠CBD$ за умовою).

Тоді $AB = BC, AE = CD.$

Очевидно, що $ABDE = CBED,$ їх периметри рівні.

Повідомити про помилку