№ 9.27 Алгебра = № 19.27 Математика
Спростіть вираз
$\left(1-x^{-2}\right)\cdot$
$\cdot \left(1-\frac{1}{x^{-1}-1}+\frac{1}{x^{-1}+1}\right);$
Розв'язок:
$\left(1-x^{-2}\right)\cdot$
$\cdot \left(1-\frac{1}{x^{-1}-1}+\frac{1}{x^{-1}+1}\right)=$
$= \frac{3x^2-1}{x^2};$
1. $\ 1-x^{-2}=1-\frac{1}{x^2}=\frac{x^2-1}{x^2};$
2. $\ x^{-1}-1=\frac{1}{x}-1=\frac{1-x}{x};$
3. $\frac{1}{\frac{1-x}{x}}=\frac{x}{1-x};$
4. $\ x^{-1}+1=\frac{1}{x}+1=\frac{1+x}{x};$
5. $\frac{1}{\frac{1+x}{x}}=\frac{x}{1+x};$
6. $\ 1-\frac{x}{1-x}+\frac{x}{1+x}=$
$= \frac{\left(1-x^2\right)-x\left(1+x\right)+x\left(1-x\right)}{\left(1-x\right)\left(1+x\right)}=$
$= \frac{1-x^2-x-x^2+x-x^2}{\left(1-x\right)\left(1+x\right)}=\frac{-3x^2+1}{1-x^2};$
7. $\frac{x^2-1}{x^2}\cdot\frac{-3x^2+1}{1-x^2}=$
$= -\frac{\left(x^2-1\right)\left(3x^2-1\right)}{x^2\left(1-x^2\right)}=$
$= \frac{\left(1-x^2\right)\left(3x^2-1\right)}{x^2\left(1-x^2\right)}= \frac{3x^2-1}{x^2}.$
