№ 7.6 Алгебра = № 12.6 Математика
Доведіть тотожність:
1. $\left(1-\frac{2a}{b}+\frac{a^2}{b^2}\right)\cdot\frac{b}{a-b}=\frac{a-b}{b};$
2. $\left(\frac{m}{n^2}-\frac{1}{m}\right):\left(\frac{1}{n}-\frac{1}{m}\right)=\frac{m+n}{n}.$
Розв'язок:
1. $\left(1-\frac{2a}{b}+\frac{a^2}{b^2}\right)\cdot\frac{b}{a-b}=$
$= \frac{b^2-2ab+a^2}{b^2}\cdot\frac{b}{a-b}= \frac{\left(a-b\right)^2\cdot b}{b^2\left(a-b\right)}\ =\frac{a-b}{b}$ що й треба було довести.
2. $\left(\frac{m}{n^2}-\frac{1}{m}\right):\left(\frac{1}{n}-\frac{1}{m}\right)=$
$= \frac{m^2-n^2}{mn^2}:\frac{m-n}{mn}=$
$= \frac{\left(m-n\right)\left(m+n\right)\cdot m n}{mn^2\left(m-n\right)}=$
$= \frac{m+n}{n}$ що й треба було довести.
