№ 5.6 Алгебра = № 10.6 Математика
Перетворіть на дріб вираз:
1. $\frac{15m^2}{22}\cdot\frac{11}{10m};$
2. $\frac{6p}{7}\cdot\frac{2,5c^2}{15p^3};$
3. $\frac{15}{xp}\cdot\frac{x^2}{45};$
4. $\frac{4a}{p^2}\cdot\left(-\frac{p}{8a^2}\right);$
5. $-\frac{5c^2}{7y}\cdot\frac{49y}{10c^3};$
6. $-\frac{6a^2}{65b^3}\cdot\left(-\frac{13b}{30a}\right).$
Розв'язок:
1. $\frac{15m^2}{22}\cdot\frac{11}{10m}=\frac{15m^2\cdot11}{22\cdot10m}=$
$= \frac{165m}{220}=\frac{3m}{4};$
2. $\frac{6p}{7}\cdot\frac{2,5c^2}{15p^3}=\frac{6p\cdot2,5c^2}{7\cdot15p^3}=$
$= \frac{15c^2}{7\cdot15p^2}=\frac{c^2}{7p^2};$
3. $\frac{15}{xp}\cdot\frac{x^2}{45}=\frac{15x^2}{45xp}=\frac{x}{3p};$
4. $\frac{4a}{p^2}\cdot\left(-\frac{p}{8a^2}\right)=-\frac{4ap}{8a^2p^2}=$
$= -\frac{1}{2ap};$
5. $-\frac{5c^2}{7y}\cdot\frac{49y}{10c^3}=-\frac{5c^2\cdot49y}{7y\cdot10c^3}=$
$-\frac{245}{70c}=-\frac{7}{2c};$
6. $-\frac{6a^2}{65b^3}\cdot\left(-\frac{13b}{30a}\right)=\frac{6a^2\cdot13b}{65b^3\cdot30a}=$
$\frac{78ab}{1950b^3}=\frac{a}{25b^2}.$
