№ 6.6 Алгебра = № 11.6 Математика
Подайте у вигляді дробу:
1. $\frac{6a^2}{5b^2}:\frac{2a^3}{15b};$
2. $-\frac{4a^2}{27x}:\frac{a^4}{9x^3};$
3. $\frac{5xy}{2m^2n}:\left(-\frac{15x^2y}{8mn^3}\right);$
4. $-\frac{2ab^2}{9x^2p}:\left(-\frac{2a^2b}{27x^2p^3}\right).$
Розв'язок:
1. $\frac{6a^2}{5b^2}:\frac{2a^3}{15b}=\frac{6a^2\cdot15b}{5b^2\cdot2a^3}=\frac{9}{ab};$
2. $-\frac{4a^2}{27x}:\frac{a^4}{9x^3}=-\frac{4a^2\cdot9x^3}{27x\cdot a^4}=$
$= -\frac{4x^2}{3a^2};$
3. $\frac{5xy}{2m^2n}:\left(-\frac{15x^2y}{8mn^3}\right)=$
$= -\frac{5xy\cdot8mn^3}{2m^2n\cdot15x^2y}= -\frac{4n^2}{3xm};$
4. $-\frac{2ab^2}{9x^2p}:\left(-\frac{2a^2b}{27x^2p^3}\right)=$
$= \frac{2ab^2\cdot27x^2p^3}{9x^2p\cdot2a^2b}= \frac{3bp^2}{a}.$
